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Application of physiologically based pharmacokinetic
modeling for sertraline dosing recommendations in pregnancy
Blessy George 1,2, Annie Lumen3, Christine Nguyen1, Barbara Wesley1, Jian Wang1, Julie Beitz1 and Victor Crentsil 1✉

Pregnancy is a period of significant change that impacts physiological and metabolic status leading to alterations in the disposition
of drugs. Uncertainty in drug dosing in pregnancy can lead to suboptimal therapy, which can contribute to disease exacerbation. A
few studies show there are increased dosing requirements for antidepressants in late pregnancy; however, the quantitative data to
guide dose adjustments are sparse. We aimed to develop a physiologically based pharmacokinetic (PBPK) model that allows
gestational-age dependent prediction of sertraline dosing in pregnancy. A minimal physiological model with defined gut, liver,
plasma, and lumped placental-fetal compartments was constructed using the ordinary differential equation solver package,
‘mrgsolve’, in R. We extracted data from the literature to parameterize the model, including sertraline physicochemical properties,
in vitro metabolism studies, disposition in nonpregnant women, and physiological changes during pregnancy. The model predicted
the pharmacokinetic parameters from a clinical study with eight subjects for the second trimester and six subjects for the third
trimester. Based on the model, gestational-dependent changes in physiology and metabolism account for increased clearance of
sertraline (up to 143% at 40 weeks gestational age), potentially leading to under-dosing of pregnant women when nonpregnancy
doses are used. The PBPK model was converted to a prototype web-based interactive dosing tool to demonstrate how the output
of a PBPK model may translate into optimal sertraline dosing in pregnancy. Quantitative prediction of drug exposure using PBPK
modeling in pregnancy will support clinically appropriate dosing and increase the therapeutic benefit for pregnant women.
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INTRODUCTION
Studies have indicated that 64% of pregnant women take at least
one medication for the treatment of serious clinical conditions for
which cessation of medication in pregnancy is inappropriate1.
Uncertainty in drug dosing in pregnancy can lead to suboptimal
therapy, which can contribute to disease exacerbation during
pregnancy. Potential ethical, scientific or legal matters constraint
enrollment of pregnant women in clinical trials. In the past five
years, only one drug has been approved by the US Food and Drug
Administration (FDA) for pregnancy-related indications2. As a
result, drugs are often prescribed without the necessary clinical
knowledge about dose, pharmacokinetics (PK), and safety or
efficacy in pregnant women. Without PK data to guide proper
dosing, prescribers may use sub-therapeutic doses for
pregnant women.
The disposition of drugs can be significantly altered in

pregnancy. During pregnancy, a multitude of time-varying
physiological and metabolic changes, thought to be regulated
by pregnancy-related hormones3,4, occur. These changes have a
direct effect on drug absorption, distribution, metabolism, and
elimination (ADME). The extent of absorption may be diminished
in pregnancy due to changes in enzymes or transporters (typically
residing in the gut or liver)5–7. Changes in drug distribution can
occur due to pregnancy-related body weight and fat mass gain,
plasma volume expansion, and decrease in plasma protein.
Increased hepatic and renal blood flow, glomerular filtration rate
and secretion, and changes in hepatic intrinsic clearance can
impact total drug clearance during pregnancy. Hepatic intrinsic
clearance describes the contribution of hepatic enzymes (mainly
cytochrome P450 or CYPs) and transporters to the drug removal
process. Drugs may be metabolized by multiple CYP enzymes

whose activity may change in opposing directions during
pregnancy. For example, CYP3A4, CYP2D6, and CYP2C9 activities
are increased during pregnancy, while CYP1A2 and CYP2C19
activities are decreased during pregnancy8. Understanding the
impact of these pregnancy-related changes on the PK of the drug
can be challenging.
Physiologically based pharmacokinetic (PBPK) modeling and

simulation combine the knowledge of drug characteristics and
physiology of the organism to develop a mechanistic under-
standing that facilitates the prediction of drug exposure or effects.
PBPK models predict target-site specific drug exposure by
mapping the complicated mechanistic course of the drug to
physiologically realistic compartments using differential equa-
tions3. PBPK modeling and simulation can account for the
physiological changes that occur in pregnancy to predict PK
alterations at each stage of pregnancy, making PBPK a potential
alternative or a complement to drug trials in pregnancy. PBPK
modeling is especially useful in pregnancy since it can integrate
time-varying physiologic parameters relevant to drug PK pro-
cesses, such as changes in maternal weight, organ volumes/blood
flows, cardiac output, drug-metabolizing enzyme activities, and
glomerular filtration rates, with drug-specific parameters into a
quantitative model for prediction beyond the domains of
observation. The challenges in obtaining clinical data in special
populations such as pregnant women have incentivized increased
use of PBPK models for supporting dosing recommendations in
drug labels and regulatory decision making9. Researchers have
demonstrated successful prediction of the disposition of various
drugs such as nifedipine, midazolam, and indinavir in the third
trimester of pregnancy using PBPK modeling10,11.
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Major depressive disorder (MDD) is a common but undertreated
disorder in pregnancy. Ten to twenty percent of women
experience depressive disorders during pregnancy and postpar-
tum12. Women with past histories of psychiatric disorders are at a
heightened risk of recurrence during pregnancy13. Untreated
depression during pregnancy can lead to impaired self-care,
failure to follow prenatal guidelines, suicidality, and impulsivity
that can endanger the health of mother and child14. The risk
versus benefit analysis favors the treatment of depression during
pregnancy; nonetheless, there are no established dosing guide-
lines for treatment of depression during pregnancy. The few
studies that have been conducted report there is a need to
increase antidepressant doses as pregnancy advances15. However,
increasing the dose arbitrarily can result in surpassing the optimal
dose for maximizing maternal therapeutic benefit and minimizing
fetal risk.
Sertraline is a selective serotonin reuptake inhibitor (SSRI) and is

one of the first-line agents for treating depression. It is slowly
absorbed after oral administration, peaking after 6 to 8 h in the
plasma16. Sertraline exhibits linear kinetics with an elimination
half-life of 32 h and is dosed once daily. Sertraline is also highly
protein-bound (98.5%)17. Metabolism of sertraline is thought to be
mediated by five or more different CYP enzymes including
CYP3A4, CYP2B6, CYP2C9, CYP2C19, and CYP2D6 which convert
sertraline to an inactive metabolite, desmethylsertraline, in the
liver18,19. Renal clearance of sertraline was found to be negli-
gible16. We used sertraline as a case-study drug to develop a
pregnancy PBPK model and a prototype for an interactive dosing
tool that will support dose optimization in pregnancy.

RESULTS
Nonpregnancy PBPK model calibration
The nonpregnancy PBPK population model, following calibration,
was simulated with the conditions of the Ronfeld study (200 mg
oral tablets sertraline daily for 30 days) and compared to the
observed sertraline plasma concentration (N= 11)17. The pre-
dicted plasma concentration versus time profile matched the
observed profile of sertraline well (Fig. 1). The observed mean and

the model prediction for the 50th percentile for several of the PK
parameters in nonpregnancy were comparable (Table 1). The 50th
percentile prediction for Tmax and T1/2 were slightly under-
predicted, however, the prediction ranges overlapped with the
observed parameter variance for Tmax. Monte Carlo simulations
(N= 1000) were used to derive the 95% prediction interval around
the mean plasma concentrations. The standard deviations for the
observed PK parameters were within the 95% prediction interval.

Pregnancy PBPK model evaluation
Pregnancy model simulations for each subject during the second
and third trimesters were compared with observed maximum
plasma concentration (Cmax) and 24-h drug exposure (AUC24) in
the second and third trimesters of pregnancy (Fig. 2). The accuracy
as indicated by the average fold error (AFE) value was calculated
for Cmax and AUC24 for both the second and third trimester. An
AFE greater than one suggests bias towards overprediction
whereas an AFE less than one suggests a bias towards under-
prediction. The AFE value for Cmax was 0.6 for the second trimester
and 0.5 for the third trimester. The AFE value for AUC24 was 0.9 for
the second trimester and 0.7 for the third trimester. The precision
as indicated by the average absolute fold error (AAFE) value for
both Cmax and AUC24 ranged from 1.5–1.7. For Cmax, 6 out of
8 subjects and 4 out of 6 subjects were within a twofold error of
the observed for the second trimester and third trimester,
respectively. For AUC24, 8 out of 8 subjects and 6 out of 6 subjects
were within a twofold error of the observed for the second
trimester and third trimester, respectively. Furthermore, in the
observed data, the average Cmax decreased by 15% (range:
9–21%) from second to the third trimester and the average AUC24
decreased by 17% (range: 12–30%) from second to the third
trimester. This data aligns with the predicted model results as
shown in Table 2. Notably, one patient was excluded from the
above calculation. The PK parameters of this patient deviated from
the others by showing an increase in Cmax and AUC24 from second
to the third trimester, while the other five patients showed a
decrease. Therefore, it is likely that this patient is an outlier. For 4
out of 6 subjects, the predicted Cmax percent change from second
to the third trimester was within a twofold error of the observed.
For 5 out of 6 subjects, the predicted AUC24 percent change from
second to the third trimester was within a twofold error of the
observed (Fig. 2).

PBPK model predicted change in sertraline hepatic metabolism
and plasma clearance
Since the model assumed that sertraline clearance was solely
through the liver, we explored the changes in the predicted CYP

Fig. 1 Model prediction for steady-state sertraline plasma
concentrations in nonpregnancy. Black dots represent mean total
plasma concentration in nonpregnant females (N= 11) ages 20–45
years receiving sertraline 200mg oral tablets daily for 30 days
following the last dose17. Monte Carlo simulations with a daily dose
of 200mg for 30 days were run for 1000 iterations. The predicted
mean is depicted by the red line. The 95% prediction interval
(2.5th–97.5th percentile range of a virtual population [N= 1000]) is
depicted in the red area.

Table 1. Pharmacokinetic parameters observed versus predicted in
nonpregnancy.

Parameter Observeda Predictedb,c

(Mean ± SD) 50th (2.5–97.5th percentile)

AUC24 (μg/L•h) 3063 ± 1413 3092 (1387–7879)

Cmax (μg/L) 166 ± 65 159 (71–433)

Tmax (h) 6.7 ± 1.8 5.0 (3.0–6.0)

T1/2 (h) 32.1 26.2 (24.0–28.0)

aRonfeld et al.17 (N= 11).
SD standard deviation, AUC24 area-under-the-curve from time 0 to 24 hours,
Cmax maximum plasma concentration, Tmax time to maximum plasma
concentration, T1/2 half-life.
bPharmacokinetic parameters calculated by Non-Compartmental Analysis
from model predicted sertraline plasma concentrations in nonpregnancy.
cMonte Carlo Simulation (N= 1000).
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Fig. 2 Pregnancy model evaluation in second and third trimester of pregnancy. The predicted versus observed graphs for each
pharmacokinetic (PK) parameter (maximum plasma concentration [Cmax] and 24-h drug exposure [AUC24]) is given for second (N= 8) and third
trimester (N= 6). In addition, the predicted versus observed graph for percent change from second to third trimester is also shown (N= 6).
The solid line represents the unity line where the predicted to observed ratio is 1. The dotted lines represent the twofold error. The black dots
represent individual patient data.
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enzyme contributions to sertraline metabolism (Fig. 3). Based on
the IVIVE calculations, in the nonpregnancy model CYP3A4
metabolism constituted 73% of the total metabolism. CYP2B6,
CYP2C9, CYP2C19, and CYP2D6 contributed 9%, 8%, 7% and 3%,
respectively. Equations for gestational-dependent changes in CYP
activity were only available for CYP3A4 and CYP2D6. Following the
incorporation of gestational-dependent equations, which capture
the increase in CYP3A4 and CYP2D6 activity, total hepatic intrinsic
clearance increased by 11%, 37%, and 63% at Gestational Age
(GA) 10, 20, and 30 weeks, respectively. Maximally, the model
predicted up to a 143% increase in sertraline plasma clearance
during the third trimester (GA= 40 weeks) compared to
nonpregnancy. A maximal decrease of 59% exposure to sertraline
was predicted in the third trimester. The extent of the changes
described above was similar across various therapeutic doses
(50–200mg). Change in PK parameters for representative gesta-
tional ages for each trimester compared to nonpregnancy is
shown in Table 2. Plasma curves for representative gestational
ages and nonpregnancy are shown in Fig. 4a–c. Based on our
pregnancy model predictions, the sertraline dose in pregnancy
needed to maintain equivalent nonpregnancy exposure is
estimated to be increased by 9%, 52%, and 117% in trimester 1,
2, and 3, respectively, from the non-pregnancy dose.

PBPK model web dosing tool
The PBPK model was converted to a prototype web-based
interactive dosing tool to facilitate comparison of sertraline dosing
in pregnancy versus nonpregnancy (Fig. 4d). Using the user-
friendly interface, non-modelers can easily use and apply the PBPK
model to predict and compare maternal plasma concentrations of
sertraline in various gestational ages of pregnancy and non-
pregnancy. Users can also simulate a dose adjustment with

commercially available dose strengths of sertraline to attain
equivalent nonpregnancy drug exposure.

DISCUSSION
In the present study, a comprehensive PBPK modeling framework
with a user-friendly interface was developed using a drug
commonly used to treat depression in pregnant women as an
example. PBPK modeling has been a valuable tool for regulatory
science and can become a powerful tool in the hands of clinicians.
The scarcity of user-friendly tools for modeling has limited the
widespread utility of PBPK. Commercial PBPK software programs
are well accepted for various PK analysis; however, their
complexity may deter non-modelers20. The current PBPK frame-
work is based on R programming language, allowing for flexibility
and transparency compared to commercial software programs.
The web-based dosing tool for the PBPK model can be viewed as a
standalone software but also has the flexibility to be updated and
revised and will help translate the output of the PBPK model into
optimal drug dosing in pregnancy. As a prototype, the routine use
of this web-based tool by clinicians at the point of care will be
premature and not advisable.
The PBPK model for sertraline that we established for

pregnancy and nonpregnancy highlights the detailed procedure
for the comprehensive PBPK modeling framework development
(Fig. 5). The PBPK model successfully predicted the observed
sertraline exposures in nonpregnancy and pregnancy. The
population simulations with the Monte Carlo method illustrate
that the variability and uncertainty around the predictions can be
modeled. The approach that we followed can be adapted to
predict the change in plasma concentrations of other drugs across
increasing gestational age, allowing dose adjustments as the
pregnancy progresses. Although the model has limitations, it lays
a foundation to encourage prediction-based approaches to dosing
in pregnancy in a user-friendly and real-time manner.
The initial model structure was based on the physicochemical

characteristics and clinical pharmacology of sertraline. Modeling of
the parent drug was prioritized due to the metabolites of
sertraline being inactive21. Although there is a concern for CYP3A4
metabolism inhibition by sertraline and its metabolites, the
reported in vitro inhibition constants are much higher than the
observed circulating metabolite concentrations22. Initially, a first-
order rate absorption was used in our model; however, the Cmax

and time at the maximum concentration (Tmax) were not
adequately captured. Following the addition of enterohepatic
circulation and a time-dependent absorption rate, the Cmax and
Tmax reflected the PK profile of the calibration dataset better.
Furthermore, there is evidence for the enterohepatic circulation of
sertraline in the literature23–25. Sertraline is a class II (low solubility,

Table 2. Predicted percent change in pharmacokinetic parameters
across gestational age compared to nonpregnancy.

Gestational age (weeks)a Cmax AUC24 CL/F Vd

7 −6% −8% 9% 3%

20 −32% −35% 53% 8%

34 −53% −54% 119% 14%

Cmax maximum plasma concentration, AUC24 area-under-the-curve from
time 0 to 24 h, CL/F apparent clearance (clearance/bioavailability), Vd
volume of distribution
aPercent change in sertraline pharmacokinetic parameters for a represen-
tative gestational age for each trimester compared to nonpregnancy
across therapeutic dose ranges (50–200 mg).

Fig. 3 Predicted change in hepatic enzyme contribution to sertraline metabolism across gestation. The nonpregnancy contribution of five
cytochrome P450 (CYP) enzymes to sertraline metabolism was calculated by in vitro-in vivo extrapolation19. Following incorporation of
gestation-dependent increase in CYP activities, the contributions of each individual CYP enzyme out of the total hepatic clearance at various
(0, 10, 20, and 30) gestational ages (GA) are demonstrated. Note that the total hepatic clearance increased over the course of pregnancy by
11%, 37%, and 63% during GA 10, 20, and 30 weeks, respectively.
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high permeability) compound based on the Biopharmaceutics
Classification System (BCS), which limits absorption from the gut
due to solubility26. The time-dependent absorption rate constant
(Ka) we incorporated into the model will account for the time it
takes sertraline to dissolve and be available for absorption27. Time-
dependent absorption parameters and enterohepatic circulation
parameters in our model were estimated to fit the calibration
dataset. However, as indicated by the AFE, there is still under-
prediction of Cmax in our pregnancy PBPK model. This could be

due to our assumption, due to lack of observed data, that
absorption of sertraline does not change in pregnancy.
Based on the sensitivity analysis (Supplementary Fig. 2), several

parameters had major influences on the prediction of sertraline
plasma concentrations. The highly influential parameters include
fraction of unbound drug (Fu), intrinsic clearance, body weight,
volume of slowly and richly perfused tissues, and liver volume. The
nonpregnancy sertraline Fu value (mean and standard deviation)
was taken from experimental measurements in the Ronfeld study
while the nonpregnancy physiological values such as body weight

Fig. 4 Predicted change in steady-state sertraline plasma concentrations with gestational age and interactive PBPK dosing tool for
sertraline. a–c The predicted sertraline plasma concentration in pregnancy (blue) compared to nonpregnancy (red) is visually depicted.
Representative gestational ages (GAs) for each trimester is shown in graphs (a–c). Lines represent the mean concentration while the colored
areas represent the 95% prediction interval (2.5th–97.5th percentile range of a virtual population [N= 1000]). d A screenshot for the web-
based interactive PBPK dosing tool. Users can adjust various parameters including gestational age, body weight, dose and number of doses.
Please note that the current version of the tool is a prototype and includes mean plasma concentration versus time profiles for illustrative
purposes and does not include estimates of computed population variabilities.
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and volume of organs were reference values for average females
from ICRP Publication 8917,28. Nonpregnancy intrinsic clearance
was estimated based on an IVIVE method. There is controversy as
to the exact contributions of various CYP450 enzymes to sertraline
metabolism. We calculated separate clearance values using two
published in vitro studies18,19. The clearance value calculated
using the Obach et al.19 in vitro studies gave the best fit to the
calibration PK dataset. In the pregnancy model, the gestational-
dependent change in Fu was based on the equation provided in
Supplementary Table 4. Fu increased by ~3%, 12%, and 27%
during the first, second, and third trimesters, respectively. The
change in body weight during pregnancy was determined by the
equation provided in Supplementary Table 4. This translated into
an increase in sertraline distribution to richly and slowly perfused
tissues based on the growth of pregnancy-specific compartments
or as body fat, respectively. Total intrinsic clearance increased over
the course of pregnancy, based on increases in CYP3A4 and
CYP2D6 activity (equations provided in Supplementary Table 4).
The increase in sertraline clearance in pregnancy seen in our
model is attributed to these multifactorial physiological changes
in pregnancy and the complex interplay of these factors.
A limitation of the pregnancy PBPK model was the unavailability

of the gestational-age dependent equations for CYP2C19, CYP2B6,

and CYP2C9. However, the sensitivity analysis for the pregnancy
PBPK model revealed that CYP3A4 had the most impact on the
pregnancy model compared to the other CYPs (Supplementary
Fig. 2B). To also mitigate this limitation, the hepatic intrinsic
clearance parameter was assigned variability and uncertainty
during Monte Carlo simulations in our model. If data on other
CYPs becomes available in the future, it can be easily incorporated.
Due to the lack of substantial sertraline PK data in pregnant

women, the predictive performance evaluation of our model was
limited. To date, there are no published sertraline PK studies in
pregnant women with richly sampled time points. Furthermore,
other covariates such as genetic polymorphisms in CYP enzymes,
inherent parameter correlations and co-dependencies that add to
PK variability were not evaluated in our study. The minimal PBPK
model we developed with the currently available PK and
physiological data provide a simplified approach to quantifying
sertraline disposition in nonpregnancy that translated well into
pregnancy. We foresee that this approach can be generalized to
any drug used in pregnancy. Future studies that capture PK data in
pregnant and nonpregnant women can be used to further
validate our model.

METHODS
Figure 5 depicts the workflow of the present study. In brief, we developed
a minimal nonpregnancy model for sertraline, using typical physiological
parameters for females28 relevant ADME processes16,19, and physicochem-
ical data29. Once the nonpregnancy PBPK model was adjusted satisfactorily
to the calibration dataset (observed clinical PK data in nonpregnancy17),
we incorporated variability and uncertainty as well as implemented the
physiological changes in pregnancy. Finally, the simulated maternal PK
profiles were compared with observed clinical PK data in the second and
third trimesters for model verification30. The model was developed using R
software (Version 3.5.0) with the ordinary differential equation (ODE) solver
package ‘mrgsolve’ (Version 0.8.12)31,32. An interactive dosing tool was
developed with the ‘shiny’ package (Version 1.4.0.2) based on the R
model code.

PBPK model structure
The minimal nonpregnancy PBPK model structure consists of five
compartments corresponding to different tissues in the body including
the liver, gut, plasma, and the rest of the body divided into lumped slowly
and richly perfused tissues connected by circulating blood system (Fig. 6).
The corresponding equations are provided in Supplementary Table 5. The
choice of compartments was defined by sertraline ADME processes. Each
compartment was defined by a tissue volume and blood flow rate. The
perfusion-limited model which works well for small molecular weight
compounds was applied to the current model. The minimal pregnancy
PBPK model included a lumped placental-fetal compartment that was
added to the richly perfused tissues compartment (Fig. 6).

Non-pregnancy PBPK model parameterization
Distribution to various tissues was determined by drug-tissue partition
coefficients. Partition coefficients represent the numerical ratio of the drug
concentration in tissues and plasma at equilibrium. Partition coefficients
were estimated using the tissue composition-based technique described
by Poulin and Haddad for highly lipophilic compounds and adjusted to fit
the curve of the calibration dataset33. The partition coefficients and the
physicochemical properties used in the model are provided in Supple-
mentary Tables 1 and 2. The fraction unbound value used was
experimentally determined17. The log P and pKa values used were
obtained from DrugBank29.
In our model, we have assumed sertraline plasma clearance is due to

100% metabolism by CYP3A4, CYP2B6, CYP2C9, CYP2C19, and CYP2D618,19.
Quantitative estimates of the CYP-specific and total hepatic clearance for
sertraline, were derived using in vitro-in vivo extrapolation (IVIVE)
(Supplementary Fig. 1). In brief, the in vitro intrinsic clearance in
recombinant human P450 enzymes was calculated for each individual
CYP enzyme by dividing the reported maximum rate of reaction (Vmax) by
the substrate concentration (0.5 µM) reported in the Obach study19. Then,
the intrinsic clearances were multiplied by a recombinant-to-microsomal

Fig. 5 Workflow for pregnancy physiologically based pharmaco-
kinetic model. Workflow for the development of the pregnancy
physiologically based pharmacokinetic (PBPK) model. Sertraline
physicochemical properties were collected from DrugBank and
used to calculate absorption, distribution, metabolism, and excre-
tion (ADME) parameters29. Physiological data for nonpregnancy was
taken from ICRP Publication 8928. A deterministic nonpregnancy
PBPK model was established and calibrated with pharmacokinetic
data in nonpregnancy from a calibration dataset17. Following
satisfactory calibration, population prediction was achieved by
performing sensitivity analysis and Monte Carlo simulations. The
population nonpregnancy model was extended to pregnancy by
incorporating physiological changes in pregnancy4,44,45. The preg-
nancy model was simulated to predict pharmacokinetic data for the
second and third trimester of pregnancy using a verification
dataset30. Following verification, an interactive pregnancy dosing
tool was created using ‘Shiny’.
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enzyme activity conversion factor also reported by Obach19. We assumed
the fumic or fraction unbound in microsomal systems to be 1, as this value
was not reported by Obach. The intrinsic clearances were then scaled to
in vivo by multiplying with microsomal protein per gram of liver (MPPGL)
which was set at 40mg/g, as well as mean enzyme abundance in
nonpregnant healthy individuals34. Finally, the individual intrinsic clear-
ances for the five CYP enzymes were added to get the total in vivo hepatic
intrinsic clearance.

Non-pregnancy PBPK model calibration
The deterministic nonpregnancy PBPK model was adjusted using a
calibration dataset which consisted of a single study by Ronfeld et al.17

with measured time-plasma concentration data for sertraline in 11
nonpregnant women ages 20–45 years. In the Ronfeld study, sertraline
50mg tablets were gradually titrated to a maximum of 200mg/day and
administered daily for 30 days. Serial blood samples were collected
following the last dose on day 30. The average concentration-time data (N
= 11) was extracted from the graph provided using WebPlotDigitizer
(version 4.2, https://apps.automeris.io/wpd/).

Sensitivity analysis and Monte Carlo Simulations
A local sensitivity analysis was performed at steady state to investigate the
influence of each model input parameter on predicting Cmax and area
under the plasma-concentration curve for 24 h (AUC24). Model parameters
with a 10% increase in the input parameter leading to a 0.5% change in
Cmax or AUC24 are reported in Supplementary Fig. 2 for a comprehensive
view of model sensitivities. Normalized sensitivity coefficients (SC) were
determined according to the following equation for each individual
condition tested:

SC ¼ ðMO0 �MOÞ
ðIP0 � IPÞ ´

IP
MO

; (1)

where MO is the initial value of the model output, MO′ is the modified
value of the model output resulting from an increase in the input

parameter value, IP is the initial input parameter value, and IP′ is the
modified parameter values35. Sensitivity analysis results for nonpregnancy
model is provided in Supplementary Fig. 2A. Sensitivity analysis was also
performed for the pregnancy model for a representative gestational age
(Supplementary Fig. 2B).
Monte Carlo simulations were employed to estimate the effects of

parameter uncertainty and inter-subject variability on model simulations.
One thousand iterations were carried out for each Monte Carlo analysis
with sensitive model parameters randomly selected from defined
distributions as described in Supplementary Table 3. Log-normal distribu-
tions of model parameters were assumed for all drug-specific parameters
such as partition coefficients, absorption rate constants, elimination rate
constants, etc. Physiological parameters, including fractional blood flows
and tissue volumes were assumed to be normally distributed, except for
body weight and cardiac output which were assumed to be lognormally
distributed36–39. Probabilistic distributions of model parameter values were
derived from experimental data when available4. For physiological
parameters for which no experimental data were available, coefficients
of variation (CVs) were assigned as 20% for partition coefficients and 30%
for physiological parameters, absorption, and elimination rate constants
based on the default assumptions used in other PBPK models40–43. To
ensure that randomly selected parameter values were biologically
plausible, the 2.5th and 97.5th percentiles of each parameter were
calculated as the upper and lower bounds for the truncated sampling
distribution and listed in Supplementary Table 3. To preserve mass balance
when physiological parameters were randomly chosen based on distribu-
tions, adjustment factors were used so that the sum of fractions of tissue
volumes or blood flows would equal 1. Due to the low sensitivity of
pregnancy-specific compartments (Supplementary Fig. 2B), the dynamic
variability in pregnancy-related changes were assumed to be the same for
each subject.

Extrapolation and evaluation of pregnancy PBPK model
Pregnancy-related changes were incorporated as gestational-dependent
polynomial equations adapted from several publications4,44,45. The
equations used in our model are provided in Supplementary Table 4.
The pregnancy PBPK model was evaluated with a verification dataset with
PK data not applied to the model calibration. The verification dataset
consisted of a single published study in which PK data (Cmax and AUC24) for
second and third trimesters were collected from 8 and 6 subjects,
respectively30. Various oral doses (25–200mg) of sertraline were taken
daily by pregnant women for at least 2 weeks. Serial blood samples were
collected during the second trimester (22–26 weeks) and third trimester
(30–34 weeks). Monte Carlo simulations were conducted by entering each
patient’s current body weight calculated back to pre-pregnancy body
weight based on the time-varying equation for body weight gain in
pregnancy4, the gestational age range for each trimester visit, and the
corresponding reported oral dose. PK parameters were calculated by Non-
Compartmental Analysis using the ‘PKPDmisc’ package (Version 2.1.1) in R
for the median predicted plasma curve after 1000 iterations.

Pregnancy PBPK model predictive performance
We compared the Cmax and AUC24 predictions based on body weight and
gestational age to the observed Cmax and AUC24 values for each subject.
The bias and precision of the PK parameters were assessed through
calculation of AFE and AAFE using the following equations46:

AFE ¼ 101=NΣlogðPredicted=ObservedÞ; (2)

AAFE ¼ 101=NΣ logðPredicted=ObservedÞj j: (3)

PBPK model web dosing tool
The PBPK model was converted to a prototype web-based interactive
dosing tool to facilitate comparison of sertraline dosing in pregnancy
versus nonpregnancy by non-modelers. The interface was constructed
with the ‘Shiny’ package. A screenshot of the tool is shown in Fig. 4d.

DISCLAIMER
This article reflects the views of the authors and should not be
construed to represent the views or policies of the U.S. Food and
Drug Administration.

Fig. 6 Minimal pregnancy PBPK model structure for sertraline.
Physiologically based pharmacokinetic (PBPK) model structure for
sertraline after oral exposure. Arrows represent blood flow between
compartments. Boxes represent tissue compartments described as
flow limited. Pregnancy-related tissues and remaining richly
perfused and slowly perfused tissues are represented as lumped
compartments. Ka represents the absorption rate constant for
disappearance from lumen and appearance in the gut
compartment.
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Reporting summary
Further information on experimental design is available in the
Nature Research Reporting Summary linked to this paper.
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